关于使用ML模型的一个基本问题涉及其对提高决策透明度的预测的解释。尽管已经出现了几种可解释性方法,但已经确定了有关其解释可靠性的一些差距。例如,大多数方法都是不稳定的(这意味着它们在数据中提供了截然不同的解释),并且不能很好地应对无关的功能(即与标签无关的功能)。本文介绍了两种新的可解释性方法,即Varimp和Supclus,它们通过使用局部回归拟合的加权距离来克服这些问题,以考虑可变重要性。 Varimp生成了每个实例的解释,可以应用于具有更复杂关系的数据集,而Supclus解释了具有类似说明的实例集群,并且可以应用于可以找到群集的较简单数据集。我们将我们的方法与最先进的方法进行了比较,并表明它可以根据几个指标产生更好的解释,尤其是在具有无关特征的高维问题中,以及特征与目标之间的关系是非线性的。
translated by 谷歌翻译
The use of reinforcement learning has proven to be very promising for solving complex activities without human supervision during their learning process. However, their successful applications are predominantly focused on fictional and entertainment problems - such as games. Based on the above, this work aims to shed light on the application of reinforcement learning to solve this relevant real-world problem, the genome assembly. By expanding the only approach found in the literature that addresses this problem, we carefully explored the aspects of intelligent agent learning, performed by the Q-learning algorithm, to understand its suitability to be applied in scenarios whose characteristics are more similar to those faced by real genome projects. The improvements proposed here include changing the previously proposed reward system and including state space exploration optimization strategies based on dynamic pruning and mutual collaboration with evolutionary computing. These investigations were tried on 23 new environments with larger inputs than those used previously. All these environments are freely available on the internet for the evolution of this research by the scientific community. The results suggest consistent performance progress using the proposed improvements, however, they also demonstrate the limitations of them, especially related to the high dimensionality of state and action spaces. We also present, later, the paths that can be traced to tackle genome assembly efficiently in real scenarios considering recent, successfully reinforcement learning applications - including deep reinforcement learning - from other domains dealing with high-dimensional inputs.
translated by 谷歌翻译
We propose JFP, a Joint Future Prediction model that can learn to generate accurate and consistent multi-agent future trajectories. For this task, many different methods have been proposed to capture social interactions in the encoding part of the model, however, considerably less focus has been placed on representing interactions in the decoder and output stages. As a result, the predicted trajectories are not necessarily consistent with each other, and often result in unrealistic trajectory overlaps. In contrast, we propose an end-to-end trainable model that learns directly the interaction between pairs of agents in a structured, graphical model formulation in order to generate consistent future trajectories. It sets new state-of-the-art results on Waymo Open Motion Dataset (WOMD) for the interactive setting. We also investigate a more complex multi-agent setting for both WOMD and a larger internal dataset, where our approach improves significantly on the trajectory overlap metrics while obtaining on-par or better performance on single-agent trajectory metrics.
translated by 谷歌翻译
This paper develops a clustering method that takes advantage of the sturdiness of model-based clustering, while attempting to mitigate some of its pitfalls. First, we note that standard model-based clustering likely leads to the same number of clusters per margin, which seems a rather artificial assumption for a variety of datasets. We tackle this issue by specifying a finite mixture model per margin that allows each margin to have a different number of clusters, and then cluster the multivariate data using a strategy game-inspired algorithm to which we call Reign-and-Conquer. Second, since the proposed clustering approach only specifies a model for the margins -- but leaves the joint unspecified -- it has the advantage of being partially parallelizable; hence, the proposed approach is computationally appealing as well as more tractable for moderate to high dimensions than a `full' (joint) model-based clustering approach. A battery of numerical experiments on artificial data indicate an overall good performance of the proposed methods in a variety of scenarios, and real datasets are used to showcase their application in practice.
translated by 谷歌翻译
We can protect user data privacy via many approaches, such as statistical transformation or generative models. However, each of them has critical drawbacks. On the one hand, creating a transformed data set using conventional techniques is highly time-consuming. On the other hand, in addition to long training phases, recent deep learning-based solutions require significant computational resources. In this paper, we propose PrivateSMOTE, a technique designed for competitive effectiveness in protecting cases at maximum risk of re-identification while requiring much less time and computational resources. It works by synthetic data generation via interpolation to obfuscate high-risk cases while minimizing data utility loss of the original data. Compared to multiple conventional and state-of-the-art privacy-preservation methods on 20 data sets, PrivateSMOTE demonstrates competitive results in re-identification risk. Also, it presents similar or higher predictive performance than the baselines, including generative adversarial networks and variational autoencoders, reducing their energy consumption and time requirements by a minimum factor of 9 and 12, respectively.
translated by 谷歌翻译
Small to medium-scale data science experiments often rely on research software developed ad-hoc by individual scientists or small teams. Often there is no time to make the research software fast, reusable, and open access. The consequence is twofold. First, subsequent researchers must spend significant work hours building upon the proposed hypotheses or experimental framework. In the worst case, others cannot reproduce the experiment and reuse the findings for subsequent research. Second, suppose the ad-hoc research software fails during often long-running computationally expensive experiments. In that case, the overall effort to iteratively improve the software and rerun the experiments creates significant time pressure on the researchers. We suggest making caching an integral part of the research software development process, even before the first line of code is written. This article outlines caching recommendations for developing research software in data science projects. Our recommendations provide a perspective to circumvent common problems such as propriety dependence, speed, etc. At the same time, caching contributes to the reproducibility of experiments in the open science workflow. Concerning the four guiding principles, i.e., Findability, Accessibility, Interoperability, and Reusability (FAIR), we foresee that including the proposed recommendation in a research software development will make the data related to that software FAIRer for both machines and humans. We exhibit the usefulness of some of the proposed recommendations on our recently completed research software project in mathematical information retrieval.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
两个随机过程的局部特征的比较可以阐明该过程差异最大的时间或空间。本文提出了一种了解具有一定体积的区域的方法,其中两个过程的边际属性不那么相似。所提出的方法是针对感兴趣的数据本身就是随机过程的设置而完全普遍设计的,因此,在功能数据的背景下,所提出的方法可用于指出与一定体积的最大差异区域的指出。系列和点过程。两个感兴趣的随机过程基础的参数函数是通过基础表示建模的,贝叶斯推断是通过集成的嵌套拉普拉斯近似进行的。数值研究验证了所提出的方法,我们通过犯罪学,金融和医学的案例研究展示了它们的应用。
translated by 谷歌翻译
灾难性的遗忘是阻碍在持续学习环境中部署深度学习算法的一个重大问题。已经提出了许多方法来解决灾难性的遗忘问题,在学习新任务时,代理商在旧任务中失去了其旧任务的概括能力。我们提出了一项替代策略,可以通过知识合并(CFA)处理灾难性遗忘,该策略从多个专门从事以前任务的多个异构教师模型中学习了学生网络,并可以应用于当前的离线方法。知识融合过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生不需要共享相同的网络结构,可以使异质任务适应紧凑或稀疏的数据表示。我们将我们的方法与不同策略的竞争基线进行比较,证明了我们的方法的优势。
translated by 谷歌翻译
不确定性的量化对于采用机器学习至关重要,尤其是拒绝分布(OOD)数据回到人类专家进行审查。然而,进步一直很慢,因为计算效率和不确定性估计质量之间必须达到平衡。因此,许多人使用神经网络或蒙特卡洛辍学的深层集合来进行相对最小的计算和记忆时合理的不确定性估计。出乎意料的是,当我们专注于$ \ leq 1 \%$ frese-falds正率(FPR)的现实世界中的约束时,先前的方法无法可靠地检测到OOD样本。值得注意的是,即使高斯随机噪声也无法触发这些流行的OOD技术。我们通过设计一种简单的对抗训练计划来帮助缓解这个问题,该计划结合了辍学合奏所预测的认知不确定性的攻击。我们证明了这种方法可以改善标准数据(即未经对抗制作)上的OOD检测性能,并将标准化的部分AUC从近乎随机的猜测性能提高到$ \ geq 0.75 $。
translated by 谷歌翻译